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ABSTRACT
We derive a corrected analytical solution for the propagation and enhanced phase mixing of torsional Alfvén waves, in a potential
magnetic field with exponentially divergent field lines, embedded in a stratified solar corona. Further we develop a code named
TAWAS which calculates the analytic solution describing torsional Alfvén waves using IDL software language. We then use
TAWAS to demonstrate that both our correction to the analytic solution and the inclusion of wave reflection have a significant
impact on Alfvén wave damping. We continue to utilise TAWAS by performing a parameter study in order to identify the
conditions under which enhanced phase mixing is strongest. We find that phase mixing is the strongest for high frequency Alfvén
waves in magnetic fields with highly divergent field lines and without density stratification. We then present a finite difference
solver, Wigglewave, which solves the linearised evolution equations for the system directly. Comparing solutions from TAWAS
and Wigglewave we see that our analytical solution is accurate within the limits of the WKB approximation but under-reports
the wave damping, caused by enhanced phase mixing, beyond the WKB limit. Both TAWAS andWigglewave solve the linearised
governing equations and not the complete nonlinear MHD equations. Paper II will consider simulations that solve the full MHD
equations including important nonlinear effects.
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1 INTRODUCTION

In this paper we will consider the propagation and enhanced phase
mixing of torsional Alfvén waves in open structures in the solar
corona with exponentially diverging magnetic field lines and a grav-
itationally stratified atmosphere. Wave based heating mechanisms
always have been part of the discussion surrounding the coronal
heating problem (Arregui 2015) and since the advent of space-based
EUV imagers a large variety of waves and oscillations have been
detected in the solar atmosphere (Parnell & De Moortel 2012). In
particular, torsional Alfvén waves were recently been directly de-
tected in a magnetic pore at the photosphere (Stangalini et al. 2021).
It was shown in (Soler et al. 2017) that torsional Alfvén waves of in-
termediate frequencies are able to penetrate to the corona whilst low
frequencywaves are reflected and high frequencywaves are absorbed
in the chromosphere due to ion-neutral damping. Furthermore the it
was shown that the transmission of torsional Alfvén waves to the
corona is improved in a magnetic field with exponentially diverging
field lines.
Alfvén waves are believed to be viable transporters of the non-

thermal energy required to heat the solar corona (Mathioudakis et al.
2013) but they are notoriously difficult to dissipate due to the high
conductivity of the corona, (Tsiklauri 2009). For this reason dis-
sipation must occur over scales smaller than typical MHD scales.
Mechanisms for generating these small length scales typically rely
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on inhomogeneities in the corona, (De Moortel et al. 2008). Phase
mixing was first proposed by (Heyvaerts & Priest 1983) as a mech-
anism for enhancing the viscous and ohmic dissipation of Alfvén
waves in loops and open regions of the solar corona. When shear
Alfvén waves on neighboring magnetic surfaces propagate at differ-
ent speeds they move out of phase with each other. This leads to the
build up of strong gradients perpendicular to the direction of propa-
gation that allows dissipation of the wave through shear viscosity or
resistivity heating the plasma.

The efficiency of phase mixing is strongly affected by both the
magnetic field configuration and the density stratification of the
plasma, (De Moortel et al. 2000). Enhanced phase mixing occurs
in magnetic field structures with exponentially diverging field lines
and significantly increases the dissipation rate of Alfvén waves. In
this case the magnetic field strength decreases exponentially with
height and therefore, so does the Alfvén speed. The effect is that as
Alfvén waves propagate upwards, their wavelengths are decreased
and this leads to stronger transverse gradients, which enhances the
effect of phasemixing. Conversely density stratification causes wave-
lengths to increase as the waves propagate upwards and this reduces
the effects of phase mixing (Smith et al. 2007).

In this paper we consider the effect of enhanced phase mixing
on torsional Alfvén waves propagating upwards in an exponentially
diverging field line structure with a transverse density gradient and
stratified atmosphere. An analytic formulation for the evolution of
shear Alfvén waves in a two-dimensional open magnetic field config-
uration is given by (Ruderman et al. 1998) using the WKB approx-
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imation. In (Smith et al. 2007) a corrected form of this analytical
formulation was validated using a 2.5D visco-resistive linear MHD
code and the dependency of the heating length scale on the mag-
netic scale heights was investigated. The conclusion was that the
dissipation of Alfvén waves is strongly dependent on the field line
divergence.
In both (Ruderman et al. 1998) and (Smith et al. 2007) it is as-

sumed that the wavelength of Alfvén waves is much smaller than the
characteristic scale of variation of the equilibrium parameters. This
allows the WKB approximation to be used and the effect of wave
reflection to be neglected. Wave reflection means that part of the
Alfvén wave is reflected back along the same field line due to the
longitudinal inhomogeneity in the Alfvén speed, as described, for
example, in (Morton et al. 2015).
In (Ruderman & Petrukhin 2017) and (Petrukhin et al. 2018) non-

reflective magnetic plasma configurations are considered; these are
a planar and cylindrical configurations respectively. Exponentially
divergent magnetic field lines are still used but the density profiles
are altered to keep the configuration non-reflective. Phase mixed
solutions for Alfvén waves propagating in these configurations are
derived without using the WKB approximation. For these formula-
tions the wavelength need not be much smaller than the characteristic
scale of variation, it can be of the same order. The density profiles
used however are only possible within a very restrictive range of
parameters. To consider a more general configuration the effects of
wave reflection must be included in the solutions.
In (Ruderman & Petrukhin 2018) the WKB approximation is once

again used to find the phase mixing solution of torsional Alfvén
waves propagating in a cylindrically symmetric, potential magnetic
field with exponentially diverging field lines, a radial density gradient
and a stratified atmosphere. In this formulation the wavelength is not
assumed to be much smaller than the characteristic scale of variation.
Instead conditions are found in which the effect of wave reflection
can be considered weak and neglected.
In this paper we begin by considering the analytic formulation

for the propagation and phase mixing of torsional Alfvén waves.
The next section section 2 is split into three parts. In section 2.1
we go through the derivation of the analytic solution presented in
(Ruderman & Petrukhin 2018) making a simple correction towards
the end. In section 2.2 we describe how the wave energy flux of
the Alfvén wave, Π, can be calculated over successive magnetic
surfaces. Then in section 2.3 we describe the numerical setup for an
equilibrium with divergent magnetic field lines and an exponentially
stratified density profile which we use in our numerical calculations.
In section 3 we present a numerical code, named TAWAS and writ-

ten in IDL, that calculates the analytical solution over a coordinate
grid in radius, 𝑟 and height, 𝑧. We use TAWAS firstly to demon-
strate the effects of both wave reflection, and of our correction to
the solution in section 4. Then in section 5 we use TAWAS to per-
form parameter studies to determine the conditions under which the
damping of torsional Alfvén waves is strongest.
In section 6 we introduce a second codeWigglewave, that directly

solves the linearised governing equations for torsional Alfén wave
propagation and is fourth order accurate in space and time. We com-
pare the results from TAWAS and Wigglewave to test the validity of
the analytical solution both within and beyond the limits of theWKB
approximation. Our aim is to determine whether the wave damping
caused by enhanced phase mixing is stronger or weaker than the an-
alytic solution suggests. Finally in section 7 we discuss our results
and summarise our findings.
The overall aim of this work is to correct and validate the analytic

solution presented in (Ruderman & Petrukhin 2018) and to identify

the conditions under which the WKB approximation, and by exten-
sion the analytic formula, is valid. In particular we will see whether
Alfvén wave damping is stronger or weaker than predicted by this
formula beyond the limits of the WKB approximation.

2 ANALYTIC SOLUTIONS

2.1 Solution Formulation

Webegin by considering the analytic solution for the propagation and
phase-mixing of torsional Alfvén waves through a viscous plasma
that is in axisymmetric equilibria. Such a solution is presented in (Ru-
derman & Petrukhin 2018) and we will follow this solution closely,
correcting a mistake in the solution towards the end of the derivation,
as confirmed by (Ruderman 2021).
The only dissipative process considered here is viscosity whilst

resistivity is neglected. In (Heyvaerts & Priest 1983) it is shown that
the kinematic viscosity and magnetic diffusivity are additive in the
dissipative term of the wave equation. As kinematic viscosity and
magnetic diffusivity are of the same order in the corona neglecting
resistivity can only reduce the efficiency of wave damping by a factor
of unity; on the other hand this allows us to simplify the analysis by
eliminating the magnetic perturbation from the governing equations.
As our plasma is in axisymmetric equilibria all of the equilibrium

quantities are dependent on only 𝑟 and 𝑧 in cylindrical coordinates.
We consider an equilibrium magnetic field without azimuthal com-
ponent B0 = (𝐵𝑟 , 0, 𝐵𝑧). As the plasma beta in the corona is very
low, we assume a negligible pressure. Our magnetic field must there-
fore be a force-free, axisymmetric magnetic field without azimuthal
component. This type of field is always potential and therefore we
can express the radial and vertical components 𝐵𝑟 and 𝐵𝑧 in terms
of the magnetic potential, 𝜙, and magnetic flux, 𝜓,

𝐵𝑟

𝐵0
=

𝜕𝜙

𝜕𝑟
= −𝐻

𝑟

𝜕𝜓

𝜕𝑧
,

𝐵𝑧

𝐵0
=

𝜕𝜙

𝜕𝑧
=

𝐻

𝑟

𝜕𝜓

𝜕𝑟
, (1)

where 𝐵0 is a constant characterizing the magnetic field strength and
𝐻 is the magnetic scale height which characterizes the divergence
of the magnetic field lines with height. Below we use the curvilinear
coordinate system (𝜙, 𝜓) in the plane 𝜃 = constant. By definition 𝜙
and 𝜓 are orthogonal with 𝜙 coordinate lines coinciding with the
magnetic field lines and 𝜓 coordinate lines being orthogonal to the
magnetic field lines. This coordinate system is sketched in fig. 1.
We begin our analysis with the MHD equations for a zero beta

plasma,

𝜕𝜌

𝜕𝑡
+ (v · ∇)𝜌 = − 𝜌(∇ · v), (2)

𝜌

(
𝜕v
𝜕𝑡

+ (v · ∇)v)
)

= − 1
𝜇0

B × (∇ × B) + ∇ · (𝜌𝜈∇v), (3)

𝜕B
𝜕𝑡

+ (v · ∇)B) = (B · ∇)v − B(∇ · v), (4)

We linearise these equations and consider purely azimuthal pertur-
bations to the velocity and magnetic field of the plasma, so that only
the 𝜃-components of the velocity and magnetic field perturbation,
𝑣 = 𝑣𝜃 and 𝑏 = 𝑏𝜃 , are non-zero. This results in torsional Alfvén
waves that are incompressible and are described by the 𝜃-components
of the momentum and induction equation,
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Figure 1. A sketch of the cylindrical and curvilinear coordinate systems. In
the cylindrical system we have the height, 𝑧 and the radius, 𝑟 whereas in the
curvilinear field aligned coordinate system we have 𝜙, which varies along
field lines and 𝜓, which varies across field lines. Both coordinate systems
include the azimuthal coordinate 𝜃 .

𝜌
𝜕𝑣

𝜕𝑡
=

1
𝑟𝜇0

(B0 · ∇(𝑟𝑏)) + 1
𝑟

𝜕

𝜕𝑟

(
𝜌𝜈𝑟

𝜕𝑣

𝜕𝑟

)
+ 𝜕

𝜕𝑧

(
𝜌𝜈

𝜕𝑣

𝜕𝑧

)
, (5)

𝜕𝑏

𝜕𝑡
= 𝑟B0 · ∇

( 𝑣
𝑟

)
, (6)

where 𝜌 is the density, 𝜇0 is the vacuum permeability, 𝜈 is the
kinematic viscosity, which is taken to be constant, and 𝐵0 · ∇ =

𝐵𝑟 𝜕𝑟 + 𝐵𝑧𝜕𝑧 . We now make the substitution 𝑣 = 𝑟𝑢 where 𝑢 is the
angular velocity. It is shown in (Petrukhin et al. 2018)we can simplify
the viscous terms in eq. (5) by making the approximation,

1
𝑟

𝜕

𝜕𝑟

(
𝜌𝜈𝑟

𝜕𝑣

𝜕𝑟

)
+ 𝜕

𝜕𝑧

(
𝜌𝜈

𝜕𝑣

𝜕𝑧

)
≈ 𝜌𝜈𝑟

(
𝜕2𝑢

𝜕𝑟2
+ 𝜕2𝑢

𝜕𝑧2

)
, (7)

we can then take the time derivative of eq. (5) and then eliminate 𝑏
using eq. (6) to obtain the wave equation,

𝜕2𝑢

𝜕𝑡2
=

1
𝜇0𝜌𝑟2

B0 · ∇
(
𝑟2B0 · ∇𝑢

)
+ 𝜈

(
𝜕

𝜕𝑡

𝜕2𝑢

𝜕𝑟2
+ 𝜕

𝜕𝑡

𝜕2𝑢

𝜕𝑧2

)
. (8)

We continue to follow (Petrukhin et al. 2018) and now switch to
using the curvilinear magnetic field coordinates 𝜙 and 𝜓 as indepen-
dent variables, our partial derivatives become,

𝜕

𝜕𝑟
=

𝐵𝑟

𝐵0

𝜕

𝜕𝜙
+ 𝑟

𝐻

𝐵𝑧

𝐵0

𝜕

𝜕𝜓
, (9)

𝜕

𝜕𝑧
=

𝐵𝑧

𝐵0

𝜕

𝜕𝜙
− 𝑟

𝐻

𝐵𝑟

𝐵0

𝜕

𝜕𝜓
, (10)

B0 · ∇ =
𝐵2

𝐵0

𝜕

𝜕𝜙
, (11)

where 𝐵 is the field strength of our equilibriummagnetic fieldB0. By
assuming that derivatives in the 𝜓 direction, perpendicular to field
lines, dominate over derivatives in the 𝜙 direction, along field lines,
we can make the approximation,

𝜕2𝑢

𝜕𝑟2
+ 𝜕2𝑢

𝜕𝑧2
=

𝑟2𝐵2

𝐻2𝐵20

𝜕2𝑢

𝜕𝜓2
, (12)

which transforms our wave equation into:

𝜕2𝑢

𝜕𝑡2
=

𝑉2
𝐴

𝑟2
𝜕

𝜕𝜙

(
𝑟2𝐵2

𝐵20

𝜕𝑢

𝜕𝜙

)
+ 𝜈𝑟2𝐵2

𝐻2𝐵20

𝜕3𝑢

𝜕𝑡𝜕𝜓2
, (13)

where

𝑉𝐴 =
𝐵

√
𝜇0𝜌

, (14)

is the Alfvén velocity. We now look for a solution to eq. (13) of
the form,

𝑢(𝑡, 𝜙, 𝜓) =
𝑣0
𝐻

𝐴(𝜙, 𝜓)Φ(𝑡, ℎ(𝜙, 𝜓), 𝜓), (15)

where 𝑣0 is a constant of velocity. The functions 𝐴(𝜙, 𝜓) and ℎ(𝜙, 𝜓)
can be chosen arbitrary, we define them as:

ℎ(𝜙, 𝜓) = 𝐵0𝑉0

∫ 𝜙

𝜙1 (𝜓)

𝑑𝜙′

𝐵𝑉𝐴
, 𝐴(𝜙, 𝜓) = 𝐴0 (𝜓)

𝐻

𝑟

(
𝜌0
𝜌

)1/4
,

(16)

where 𝑉0 = 𝐵0/
√
𝜇0𝜌0, 𝜌0 is the density at the origin and 𝜙1 (𝜓)

𝐴0 (𝜓) are arbitrary functions with the condition that 𝐴0 (𝜓)/𝑟 is
nonzero in the limit𝜓 → 0.With these functions defined, substituting
eq. (15) into eq. (13) gives the following equation for Φ:

𝜕2Φ

𝜕𝑡2
−𝑉20

𝜕2Φ

𝜕ℎ2
=

𝜈𝑟2𝐵2

𝐻2𝐵20

𝜕Ξ

𝜕𝑡
+
𝑉2
𝐴
Φ

𝐴𝑟2
𝜕

𝜕𝜙

(
𝑟2𝐵2

𝐵20

𝜕𝐴

𝜕𝜙

)
, (17)

where

Ξ =
1
𝐴

𝜕2 (𝐴Φ)
𝜕𝜓2

+ 2
𝐴

𝜕ℎ

𝜕𝜓

𝜕

𝜕𝜓

(
𝐴
𝜕Φ

𝜕ℎ

)
+ 𝜕2ℎ

𝜕𝜓2
𝜕Φ

𝜕𝜓
+

(
𝜕ℎ

𝜕𝜓

)2
𝜕2Φ

𝜕ℎ2
.

(18)

The terms on the RHS of eq. (17) prescribe the wave damping from
viscous dissipation and wave reflection respectively. In order to apply
theWKB approximation it is assumed that both the terms on the RHS
of eq. (17) are much smaller than the terms on the LHS. We now
assume Alfvén waves are driven at the lower boundary, representing
the base of the corona, and then propagate along magnetic field
lines. Considering harmonic waves and taking all time-dependant
quantities as proportional to 𝑒𝑖𝜔𝑡 reduces eq. (17) to,

𝑉20
𝜕2Φ

𝜕ℎ2
+ 𝜔2Φ =

𝑖𝜔𝜈𝑟2𝐵2

𝐻2𝐵20
Ξ −

𝑉2
𝐴
Φ

𝐴𝑟2
𝜕

𝜕𝜙

(
𝑟2𝐵2

𝐵20

𝜕𝐴

𝜕𝜙

)
. (19)

Our assumption that wave damping is weak allows the use of the
following scaled quantities in our wave equation,

ℎ̃ = 𝜖ℎ, �̃� = 𝑅𝑒 𝜈, 𝜙 = 𝜖𝜙, (20)

where the scaling parameter 𝜖 � 1 and 𝑅𝑒 = 𝐻𝑉0/𝜈 is the Reynolds
number, see (Ruderman & Petrukhin 2018) for details. Substituting
these scaled quantities transforms eq. (19) once again,

𝜖2𝑉20
𝜕2Φ

𝜕ℎ̃2
+ 𝜔2Φ =

𝑖𝜔�̃�𝑟2𝐵2

𝐻2𝐵20𝑅𝑒
Ξ̃ −

𝜖𝑉2
𝐴
Φ

𝐴𝑟2
𝜕

𝜕𝜙

(
𝑟2𝐵2

𝐵20

𝜕𝐴

𝜕𝜙

)
. (21)
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At this stage the standard WKB method is used to look for a
solution in the form,

Φ = 𝑄( ℎ̃, 𝜓) exp 𝑖𝜖−1Θ( ℎ̃, 𝜓), (22)

where Ξ̃ is simply Ξ but with ℎ̃ substituted for ℎ. Substituting this
expression into eq. (21) and using the expression for Ξ̃ gives:

𝜖2
𝜕2𝑄

𝜕ℎ̃2
+2𝑖𝜖 𝜕𝑄

𝜕ℎ̃

𝜕Θ

𝜕ℎ̃
+ 𝑖𝜖𝑄

𝜕2Θ

𝜕ℎ̃2
−𝑄

(
𝜕Θ

𝜕ℎ̃

)2
+ 𝜔2

𝑉20
𝑄

= − 𝑖𝜖−2𝜔�̃�𝑟2𝐵2

𝐻2𝐵20𝑉
2
0 𝑅𝑒

𝑄

[(
𝜕ℎ̃

𝜕𝜓

)2 (
𝜕Θ

𝜕ℎ̃

)2
+ O(𝜖)

]
−

𝜖𝑉2
𝐴

𝐴𝑟2𝑉20
𝑄

𝜕

𝜕𝜙

(
𝑟2𝐵2

𝐵20

𝜕𝐴

𝜕𝜙

)
.

(23)

Now terms of the same order are collected. Assuming that the
first term on the RHS is smaller than the the two largest terms on
the LHS, terms of the order unity are collected. This is called the
approximation of geometrical optics and determines the shape of the
rays along which waves propagate. This gives us an equation for Θ:

(
𝜕Θ

𝜕ℎ̃

)2
=

𝜔2

𝑉20
, (24)

which when solved for waves propagating in the positive 𝜙 direc-
tion gives:

Θ =
ℎ̃𝜔

𝑉0
. (25)

Now the terms of order 𝜖 are collected. This is called the approxi-
mation of physical optics and determines the spatial evolution of the
wave amplitude. The first term on the RHS which describes resistive
damping due to phase mixing should be included in this contribution
hence we set 𝑅𝑒 = 𝜖−3.
This iswhere our correction ismade and our solution diverges from

that given in (Ruderman& Petrukhin 2018). In eq.(18) of (Ruderman
& Petrukhin 2018) when the terms of order 𝜖 are collected all the
terms are divide through 𝑖 except for the second term on the RHS.
Here we correct this by dividing all terms by 𝑖. This gives us,

2
𝜕𝑄

𝜕ℎ̃

𝜕Θ

𝜕ℎ̃
+𝑄

𝜕2Θ

𝜕ℎ̃2
= − 𝜔�̃�𝑟2𝐵2

𝐻2𝐵20𝑉
2
0
𝑄

(
𝜕ℎ̃

𝜕𝜓

)2 (
𝜕Θ

𝜕ℎ̃

)2
+

𝑖𝑉2
𝐴

𝐴𝑟2𝑉20
𝑄

𝜕

𝜕𝜙

(
𝑟2𝐵2

𝐵20

𝜕𝐴

𝜕𝜙

)
.

(26)

Returning to non-scaled variables now gives the following ordi-
nary differential equation for Q:

𝜕𝑄

𝜕𝜙
= (𝑖𝑅 − Υ)𝑄, (27)

where,

Υ =
𝜔2𝜈

2𝑉30𝐺
2

(
𝜕ℎ

𝜕𝜓

)2
, (28)

𝑅 =
𝐺𝑉0
2𝜔𝐻2

𝜕

𝜕𝜙

(
𝑟2𝐵2

𝐵20

𝜕

𝜕𝜙
𝐺

)
, (29)

and 𝐺 = 𝐴/𝐴0. We also impose the condition:

𝑄 = 1 at 𝜙 = 𝜙1 (𝜓). (30)

As with (Ruderman & Petrukhin 2018) we can now use eqs. (15),
(16), (22) and (25) and recall that the perturbations are proportional
to 𝑒−𝑖𝜔𝑡 to obtain:

𝑣 = 𝑣0𝑊 exp [𝑖𝜔(ℎ/𝑉0 − 𝑡)], 𝑊 = 𝑄𝐴0 (𝜓)
(
𝜌0
𝜌

)1/4
. (31)

For the magnetic field perturbation we can use eqs. (6), (16)
and (31) and the relation eq. (11) to yield,

𝑏 = 𝑣0𝐵

[
𝑖𝑟𝐵

𝜔𝐵0

𝜕 (𝑊/𝑟)
𝜕𝜙

− 𝑊

𝑉𝐴

]
exp [𝑖𝜔(ℎ/𝑉0 − 𝑡)] . (32)

These solutions differ from those given in (Ruderman & Petrukhin
2018) as 𝑄 and consequently 𝑊 now have different values, further-
more they are now complex valued (Ruderman 2021).

2.2 Wave Energy Flux Calculation

In order characterise the efficiency of wave damping we follow the
example in (Ruderman & Petrukhin 2018) being careful to account
for the fact that 𝑄 and𝑊 are now complex valued. We calculate the
wave energy flux across magnetic surfaces defined by 𝜙 = constant.
Each surface is uniquely identified by its height of intersection with
the 𝑧-axis, hence we can define the energy flux Π as a function of
height 𝑧. Multiplying eq. (5) by 𝑣, eq. (6) by 𝑏/𝜇0 and adding the
results we obtain,

𝜕

𝜕𝑡

(
𝜌𝑣2

2
+ 𝑏2

2𝜇0

)
=
1
𝜇0

∇ · (B0𝑣𝑏)

+ 𝑣

𝑟

𝜕

𝜕𝑟

(
𝜌𝜈𝑟

𝜕𝑣

𝜕𝑟

)
+ 𝑣

𝜕

𝜕𝑧

(
𝜌𝜈

𝜕𝑣

𝜕𝑧

)
.

(33)

The expression in the parenthesis on the LHS is the wave energy
density, whilst B0𝑣𝑏/𝜇0 is the density of wave energy flux. When
𝜈 = 0 this is the equation for wave energy conservation. The density
of wave energy flux is directed along the field lines. We now want
to obtain an expression for the density of wave energy flux averaged
over a wave period.
To obtain physical quantities we need to take the real parts of 𝑣 and

𝑏 as given in eq. (31) and eq. (32). It is however no longer possible
to reduce this quantity to a simple expression in terms of 𝑊 , for
example by evaluating 𝜕 (𝑊/𝑟)/𝜕𝜙 we see that the expansion of 𝑏 is,

𝑏 = − 𝑣0𝑊

[
𝑖𝐵2

𝜔𝐵0

[
1
𝑄

𝜕𝑄

𝜕𝜙
+ 1
4𝜌

𝜕𝜌

𝜕𝜙
+ 1
𝑟

𝜕𝑟

𝜕𝜙

]
+ √

𝜇0𝜌

]
exp [𝑖𝜔(ℎ/𝑉0 − 𝑡)] .

(34)

Simultaneously we are faced with the issue that in order to evaluate
the density of wave energy flux for our simulation results wewill have
to use the values of 𝑣 and 𝑏 directly. For both of these reasons we
decide to calculate wave energy flux through each surface using the
wave envelopes for 𝑣 and 𝑏. By using the assumption that 𝑣 and 𝑏 are
in anti-phase we can conclude that the density of wave energy flux
averaged over a wave period is,

− 𝐵

𝜇0
〈𝑣𝑏〉 = 𝐵

2𝜇0
𝑣𝑝𝑏𝑝 , (35)
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where 𝑣𝑝 and 𝑏𝑝 are the maximum values of the wave envelopes
for 𝑣 and 𝑏 respectively. We now define Σ as the magnetic surface
defined by 𝜙∗ = constant that intersect the 𝑧-axis at 𝑧∗. We assume
that the waves propagate in the magnetic tube bounded by the surface
𝜓 = 𝜓𝑏 . The wave energy flux through Σ is then the density of wave
energy flux integrated over the part of Σ in the magnetic tube, we
denote this part as Σ𝑏 . It is shown in (Ruderman & Petrukhin 2018)
that,

𝑑Σ =
𝐻𝐵0
𝐵

𝑑𝜓𝑑𝜃. (36)

Now using eq. (35) and eq. (36) we obtain that the average energy
flux through the surface Σ𝑏 is,

Π(𝑧) = − 1
𝜇0

∫
Σ𝑏

𝐵〈𝑣𝑏〉 𝑑Σ = 𝜋
𝐻𝐵0
𝜇0

∫ 𝜓𝑏

0
𝑣𝑝𝑏𝑝 𝑑𝜓. (37)

2.3 Numerical Setup

We can now use our analytic solution to solve for the propagation
of torsional Alfvén waves in a potential magnetic field with expo-
nentially diverging field lines and a stratified density profile. first we
must define the magnetic structure and density profile, our setup is
identical to that given in (Ruderman & Petrukhin 2018).
We consider a magnetic field that is potential, axisymmetric and

has no azimuthal component. The field must therefore satisfy the
vector laplace equation ∇2B0 = 0 in cylindrical coordinates, the
solution to this equation is outlined in appendix A. Solving this
equation with the criteria that the field strength decreases with height
exponentially according to our magnetic scale height 𝐻, defines our
magnetic field as,

𝐵𝑟 = 𝐵0𝑒
−𝑧/𝐻 𝐽1 (𝑟/𝐻), 𝐵𝑧 = 𝐵0𝑒

−𝑧/𝐻 𝐽0 (𝑟/𝐻), (38)

where 𝐽0 and 𝐽1 are Bessel functions of the first kind and of zero and
first order respectively. The functions 𝜙 and 𝜓 are then given by,

𝜙 = −𝐻𝑒−𝑧/𝐻 𝐽0 (𝑟/𝐻), 𝜓 = 𝑟𝑒−𝑧/𝐻 𝐽1 (𝑟/𝐻). (39)

We define our gravitationally stratified atmosphere as follows,

𝜌 = �̂�(𝜓)𝑒−𝑧/𝐻𝜌 = �̂�(𝜓)𝑒−𝛼𝑧/𝐻 , (40)

where the density scale height 𝐻𝜌 = 𝑘𝐵𝑇0/𝑚𝑔, 𝑘𝐵 is Boltzmann’s
constant, 𝑇0 is the temperature in the corona and is constant, 𝑚 ≈
0.6𝑚𝑝 in the corona, 𝑚𝑝 is the proton mass, 𝑔 is the solar surface
gravity, 𝛼 = 𝐻/𝐻𝜌 and �̂�(𝜓) is an arbitrary function that defines the
density variation across magnetic field lines.
We use �̂�(𝜓) to define a central higher density tube enclosedwithin

the field line defined by 𝜓 = 𝜓𝑏 , we will study the propagation of
torsional Alfvén waves within this tube. We want this tube to have a
density gradient transverse to the propagation of Alfvén waves along
magnetic field lines so that we can study the effect of phase mixing.
We do this by defining �̂�(𝜓) to be,

�̂�(𝜓) = 𝜌0
𝜁

{
1 + (𝜁 − 1) (1 − 𝜓/𝜓𝑏)2, 𝜓 ≤ 𝜓𝑏

1, 𝜓 ≥ 𝜓𝑏

(41)

where 𝜁 is the density contrast between the centre and exterior of
the magnetic tube �̂�(0)/�̂�(𝜓𝑏). An example of what the density

Figure 2. An example of the density contrast for this setup, brighter areas
represent a higher density, the white contour shows the boundary of the
central high density tube. For this particular example the scale height used
are 𝐻 = 20Mm and 𝐻𝜌 = 100Mm.

structuring looks like in given in fig. 2 the tube boundary at 𝜓 = 𝜓𝑏

is highlighted for clarity.
Finally we define our wave driving, we would like to drive our

waves from the lower boundary of the domain however strictly speak-
ing we should be driving waves from a magnetic surface defined by
𝜙 = 𝑐𝑜𝑛𝑠𝑡, let us consider the magnetic surface through the coordi-
nate origin 𝑟 = 0,𝑧 = 0 which has a value 𝜙 = −𝐻. Let this surface
intersect 𝜓 = 𝜓𝑏 at 𝑟 = 𝑟0 and 𝑧 = 𝑧0, from eq. (39) we then have,

𝜓𝑏 = 𝑟0
𝐽1 (𝑟0/𝐻)
𝐽0 (𝑟0/𝐻) , 𝑧0 = −𝐻𝑙𝑛(𝐽0 (𝑟0/𝐻)). (42)

By taking 𝑟0 � 𝐻 we can approximate the Bessel functions by
the leading terms in their Taylor series, 𝐽0 (𝑟0/𝐻) ≈ 1, 𝐽1 (𝑟0/𝐻) ≈
𝑟0/2𝐻. This leads us to,

𝜓𝑏 ≈ 𝑟20/2𝐻, 𝑧0 ≈ 0. (43)

This implies that the magnetic surface 𝜙 = −𝐻 roughly coincides
with the lower boundary 𝑧 = 0within the confines of the tubemeaning
we can treat the lower boundary as a magnetic surface. The radius
𝑟0 is where the tube boundary 𝜓 = 𝜓𝑏 intersects the lower boundary
and defines the width of the tube. We can therefore drive our Alfvén
waves from the lower boundary 𝑧 = 0 and within the tube structure
𝑟 ≤ 𝑟0, we define our wave driving by,

𝑢 =


𝑢0

(
1 − 𝑟2

𝑟20

)
𝑒−𝑖𝜔𝑡 , 𝑟 ≤ 𝑟0

0, 𝑟 ≥ 𝑟0

at 𝑧 = 0 (44)

From this expression for the angular velocity 𝑢 we can find the
linear velocity 𝑣 = 𝑟𝑢 which we will use when driving waves in
our simulations. We can calculate 𝐴0 (𝜓) which is required for the
analytic solution. By comparing this expression for 𝑢 with eq. (31),
noticing that ℎ = 0 at 𝑧 = 0 and using the relation 𝑟2/𝑟20 = 𝜓/𝜓𝑏 , we
have,

𝐴0 (𝜓) =


(
�̂�
𝜌

)1/4 (
𝜓
𝜓𝑏

)1/2 (
1 − 𝜓

𝜓𝑏

)
, 𝜓 ≤ 𝜓𝑏

0, 𝜓 ≥ 𝜓𝑏

(45)
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6 C. Boocock and D. Tsiklauri

In what follows we consider the propagation of Alfvén waves in
a typical coronal plume or divergent coronal loop structures. We set
our characteristic values for field strength and density as 𝐵0 = 0.001
T, and 𝜌0 = 1.66 × 10−12 kg m-3 (which corresponds to a number
density of approximately 𝑛0 = 1 × 1015 m-3). This gives us an
Alfvén speed of 𝑉0 ≈ 700 m s-1. We fix the initial tube radius to be
𝑟0 = 5 Mm and the density contrast to be 𝜁 = 5 for all cases. We
set the amplitude of our Alfvén wave driving at the lower boundary,
representing the base of the corona, to have a maximum value of
about 40 km s-1, based on (Banerjee et al. 1998) and (Doyle et al.
1999), this is equivalent to setting 𝑢0 = 100 km s-1.
The parameters that we vary across different cases are themagnetic

and density scale heights, 𝐻 and 𝐻𝜌, the wave period 𝑇 and the
kinematic viscosity 𝜈. The magnetic and density scale heights used
are between 20 and 100 Mm. The magnetic scale height depends
very much on the structure being considered, however, considering
the temperature of the corona is 1-2 MK, see (Aschwanden 2004),
we would expect the density scale height be somewhere between
50-100 Mm. The wave periods considered are between 10 and 120
seconds as we expect shorter period waves to be absorbed in the
chromosphere and longer period waves to be reflected as discussed
in (Soler et al. 2017). The values we use for kinematic viscosity range
between 𝜈 = 1×104 and 5×107m2s-1, these values are several orders
of magnitude greater than would be expected from classical plasma
theory (Braginskii 1965). This anomalous viscosity could be caused
by turbulence as described in (Liu et al. 2014), possibly triggered by
the Kelvin-Helmholtz instability as discussed in (Soler et al. 2021),
indeed numerical evidence for such values is presented in (Tsiklauri
2006).

3 ANALYTIC SOLVER: TAWAS

Using this numerical setup we proceed to calculate solutions for
torsional Alfvén wave propagation for different cases, with each case
using different values for the magnetic and density scale heights,
𝐻 and 𝐻𝜌, the wave period 𝑇 and the kinematic viscosity 𝜈. We
calculate solutions using our analytical formula and an IDL script
written by the authors called TAWAS (Torsional Alfvén wave analytic
soltion).

TAWAS calculates the analytic solutions for 𝑣 and 𝑏 over a uniform
numerical grid using the analytic formula described in section 2.1
and then calculates the wave energy flux Π(𝑧) as a function of the
height using eq. (37) in section 2.2. The script for this code can
be found at https://github.com/calboo/TAWAS under the file-
name tawas.pro, along with a description of how the calculations are
performed.
Every time TAWAS was used in this study the resolution was set to

500× 2000 in the 𝑟 and 𝑧 directions respectively. The domain height
was fixed at 𝑧max = 100Mm but the domain radius 𝑟max was varied
depending on 𝐻 to allow for maximal resolution in each case.
Example of the output from TAWAS are shown in figs. 3 to 5,

these were produced from a case with the parameters 𝐻 = 20 Mm,
𝐻𝜌 = 100 Mm, 𝑇 = 60 s and 𝜈 = 5 × 107 m2s-1. fig. 3 and fig. 4
show the velocity and magnetic field evolution of the wave over the
domain and fig. 5 shows the normalised wave energy flux, Π(𝑧),
plotted against height.
We can see the damping effects of both reflection and phasemixing

in fig. 5. Reflective damping occurs lower in the domain and its
effect decreases with height whereas the damping caused by phase
mixing is initially small and its effect increases with height. This is
because the reflection and phase mixing of Alfvén waves depends

Figure 3. An example of the velocity output form TAWAS. This contour plot
shows the azimuthal velocity 𝑣 of the plasma as the torsional Alfvén wave
propagates through the central tube. Note that at higher heights thewavelength
become very small so the wave fronts can only be resolved fully when zoomed
in.

Figure 4.An example of the magnetic field output form TAWAS. This contour
plot shows the azimuthal magnetic field 𝑏 of the plasma as the torsional
Alfvén wave propagates through the central tube. Note that at higher heights
the wavelength become very small so the wave fronts can only be resolved
fully when zoomed in.

on their wavelength. Longer wavelengths are reflected more strongly
and shorter wavelengths undergo more phase mixing due to stronger
transverse gradients that lead to greater viscous dissipation (Smith
et al. 2007). In this case the divergence of the magnetic field lines
causes the Alfveń velocity and therefore the wavelength to decrease
with height thus reducing the effect of reflection and enhancing the
effect of phase mixing as height increases.

4 EFFECT OF CORRECTION TO FORMULA

Now that we have a tool for numerically solving the analytic formula,
we want to show the effect of our correction to the formula. Our cor-
rection only affects damping through wave reflection. In (Ruderman
& Petrukhin 2018) the effect of reflection was neglected entirely in
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Figure 5. An example of wave energy flux output from TAWAS. This plot
shows the normalised wave energy flux of the torsional Alfvén wave as it
propagates upwards through the central tube.

numerical calculations. However, as we will see, the reflective term
can cause significant damping to the total wave energy flux.
Here we will demonstrate two separate points. Firstly, that the

effect of reflection causes wave damping that is significantly different
from the case where reflection is neglected entirely. To do this wewill
need to compare the solutions from TAWAS to those from an altered
version of TAWAS that does not include wave reflection. We have
named this altered version norefl and it can also be found at https:
//github.com/calboo/TAWAS under the filename norefl.pro.
Secondly, that the effect of our correction to the formula caused

wave damping that is significantly different from the uncorrected
formula in which reflection is included. To do this will need to
compare the solutions from TAWAS to those from an altered version
of TAWAS that includes wave reflection but does not include our
correction to the formula. We have named this altered version uncorr
and it can also be found at https://github.com/calboo/TAWAS
under the filename uncorr.pro.
To compare the wave energy flux outputs from these three scripts

(TAWAS, norefl and uncorr) we consider plots of Π(𝑧) from each
script for two different cases. For both cases we set the magnetic and
density scale heights to 𝐻 = 20Mm and 𝐻𝜌 = 100Mm respectively
and the viscosity to 𝜈 = 5 × 107 m2s-1, this will allow us to see the
effects of both wave reflection and of viscous dissipation.
For the first case we set the wave period to 𝑇 = 60 s. A graph of

Π(𝑧) is shown for this case in fig. 6. For the second case we set the
wave period to 𝑇 = 120 s increasing the effect of wave reflection and
reducing the effect of phase mixing. A graph of Π(𝑧) is shown for
this case in fig. 7.
We can see from fig. 6 that when𝑇 = 60 s the effect of wave reflec-

tion would seem large if the uncorrected formula is used, however,
once the formula is corrected the solution including reflection is very
similar to the solution without wave reflection. In fig. 7, on the other
hand, we can see that when 𝑇 = 120 s the effect of wave reflection is
still significant even when the corrected formula is used.
From these graphs then,we can see that the effect ofwave reflection

should be included in our analysis as in some cases it can have
a significant impact on wave damping. We can also see that our
correction to the formula significantly changes the predicted amount

Figure 6. Graph of normalised wave energy flux Π(𝑧) for the case in which
𝐻 = 20Mm,𝐻𝜌 = 100Mm, 𝜈 = 5×107 m2s-1 and𝑇 = 60 s. The dot-dashed
blue line show results from the formula in which reflection is neglected, the
dashed red line shows results from the formula that includes reflection but
does not include our correction and the black line shows results from our
corrected formula.

Figure 7. Graph of normalised wave energy flux Π(𝑧) for the case in which
𝐻 = 20 Mm, 𝐻𝜌 = 100 Mm, 𝜈 = 5 × 107 m2s-1 and 𝑇 = 120 s. The
dot-dashed blue line show results from the formula in which reflection is
neglected, the dashed red line shows results from the formula that includes
reflection but does not include our correction and the black line shows results
from our corrected formula.

of wave damping when compared to results from the uncorrected
formula.
It is important when considering these graphs to note that, only

the damping caused by phase mixing will heat up the corona through
viscous dissipation. It is therefore incorrect to equate all of the damp-
ing of wave energy flux to viscous heating power. At first glance
this might suggest that neglecting wave reflection is a sensible idea,
however, note that in fig. 6 that the wave energy flux for both our
corrected formula and for the solution with no reflection converge at
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higher heights. This suggests that if wave reflection is neglected then
more power will be erroneously attributed to viscous heating.
These graphs not only demonstrate the significance of our correc-

tion to the formula they also demonstrate the importance of calculat-
ing damping due to wave reflection. Wave spectra of Alfv’en waves
in the corona suggest that partial reflection of the waves occurs and
is a frequency dependent phenomena (Morton et al. 2015) as with
our analytical solutions. By explicitly calculating the effect of wave
reflection we can say with more certainty in which cases it can truly
be neglected.

5 ANALYTICAL PARAMETER STUDIES

Using our corrected analytical formula and our numerical solver
TAWAS can now find solutions for a variety of different cases. We
nowconduct parameter studies to identify the cases inwhich damping
of the torsional Alfvén wave is strongest.
This is necessary for two reasons. Firstly, wewould like to know the

conditions in which we expect enhanced phase mixing to dissipate
a significant portion of the Alfvén waves energy through viscous
dissipation. This will help to identify the conditions and regions of
the solar corona in which phase mixing can fulfil the coronal heating
requirement.
Secondly, we would like to test the validity of our analytic formula

in the limit of strong Alfvén wave damping. When wave damping,
in the form of either reflection or phase mixing, occurs over length
scales comparable to the wavelength of the propagating wave then
the WKB approximation is no longer valid, we say that these cases
are beyond the WKB limit.
By identifying the cases for which wave damping is strongest

we can later test the validity of our analytic formula beyond the
WKB limit by comparing results from TAWAS to results from codes
which solve the governing equations directly using finite differencing
methods for these cases. Although we do not expect our formula to
be accurate beyond the WKB limit, it is not clear whether we should
expect more or less damping than predicted in these cases.

5.1 Magnetic and Density Scale Height Parameter Study

We begin with we perform a parameter study to investigate the effect
of the magnetic and density scale heights 𝐻 and 𝐻𝜌. We run TAWAS
for values of 𝐻 and 𝐻𝜌 between 20 and 100 Mm, viscosity and wave
period are fixed at 𝜈 = 5 × 107 m2s-1 and 𝑇 = 60 s. We very broadly
want to measure the total wave damping for each case, to quantify
this we consider the normalised wave energy flux remaining at height
𝑧max, that is Π(𝑧max)/Π(0).
In fig. 8 we see a contour plot of Π(𝑧max)/Π(0) for the different

values of 𝐻 and 𝐻𝜌 used in this study.We can see that for 𝜈 = 5×107
m2s-1 and 𝑇 = 60 s there is only significant damping when the
magnetic field lines are highly divergent. In fact the only cases where
Π(𝑧max)/Π(0) < 0.9 were those with 𝐻 = 20 Mm. Furthermore
we can see that the damping increases as the density scale height is
increased.
These results are what one would expect. The mechanism of en-

hanced phase mixing is greater for equilibria with highly divergent
field lines and weak density stratification. The divergence of the
magnetic field lines causes a decrease in Alfvén speed with height,
this in turn decreases the wavelength of propagating waves leading
to stronger transverse gradients and increased phase mixing. Con-
versely atmospheric stratification increases the Alfvén speed with

height, increasing the wavelength of waves and reducing the effect
of phase mixing.
By looking at graphs ofΠ(𝑧), such as the graph shown in fig. 5, for

each individual case we can also see that wave reflection is strongest
for low values of 𝐻 and high values of 𝐻𝜌. This is however for
a different reason. Wave reflection is stronger when Alfvén waves
encounter strong longitudinal gradients in the Alfvén speed. In the
case of highly divergent magnetic field lines and weak density strat-
ification, the gradient in Alfvén speed along field lines, i.e. in the
direction of wave propagation, is greatest and hence the effect of
wave reflection is strongest.

5.2 Viscosity-Period Parameter Study

Having identified the scale heights for which wave damping is the
strongest we move on to investigate the effects of changing the vis-
cosity, 𝜈, and the wave period, 𝑇 . We conduct a second parameter
study using TAWAS. We vary 𝜈 between 1 × 10−4 and 𝜈 = 5 × 107
m2s-1 and 𝑇 between 15 and 120 s. For this parameter study our
scale heights are fixed at 𝐻 = 20 Mm and 𝐻𝜌 = 100 Mm as these
values provide the strongest wave damping of all the values we have
considered.
In fig. 9 we see a contour plot of Π(𝑧max)/Π(0) for the different

values of 𝜈 and 𝑇 used in this study. This plot is particularly good at
demonstrating the different dependencies of phase mixing and wave
reflection. Phase mixing is stronger for shorter period waves and
higher viscosities whilst wave reflection is stronger for longer period
waves and is independent of viscosity.
We can see that for higher viscosities where viscous dissipation

through phase mixing is the dominant cause of wave damping, the
damping decreases as the period is increased because of the reduced
effect of phase mixing. In contrast for low viscosities where there is
very little wave damping caused by phase mixing, we can see that
wave damping increases as the period is increased due to the growing
effect of wave reflection.
We can also see that in the short period limit where phasemixing is

strong andwave reflection isweaker there is a very strong dependence
of the wave energy on viscosity. In the long period limit, however, the
wave damping is mostly independent of the viscosity as it is caused
primarily by wave reflection.

6 FINITE DIFFERENCE SOLVER: WIGGLEWAVE

Now that we have determined the parameter space for which wave
damping is the strongest we can test the validity of the analytical
solution bothwithin and beyond the limits of theWKBapproximation
used in its derivation. We will do this by comparing the results for
the Alfvén wave propagation calculated in TAWAS to the results
fromWiggleWave, a FORTRAN code written to solve the linearised
governing equations for this system, eqs. (5) and (6), directly using
finite differencing methods.

WiggleWave uses a fourth-order central difference scheme for cal-
culating spatial derivatives and a fourth-order Runge-Kutta (RK4)
scheme for updating at each timestep. WiggleWave calculates so-
lutions for 𝑣 and 𝑏 over two-dimensional grid in radius 𝑟 and
height 𝑧, the wave envelopes for 𝑣 and 𝑏 are also calculated. The
source code and more details for WiggleWave can be found at
https://github.com/calboo/Wigglewave.
For simulations in WiggleWave the grid resolution used over the

domain was the same as in TAWAS, that is to 500 × 2000, in the 𝑟
and 𝑧 directions respectively. Although exponential damping regions
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Figure 8. Contour plot showing values of the the normalised wave energy
flux, Π(𝑧max)/Π(0) , from our scale height parameter study. Note that the
colour scale is logarithmic. The magnetic scale height 𝐻 is on the 𝑥-axis and
the density scale height 𝐻𝜌 is on the 𝑦-axis. The diamond symbols represent
data points from the parameter study and the thick line contours indicate
where Π(𝑧max)/Π(0) has values of 0.9 and 0.99.

Figure 9. Contour plot showing values of the the normalised wave energy
flux, Π(𝑧max)/Π(0) , from our viscosity-period parameter study. Note that
the colour scale is logarithmic. The wave period 𝑇 is on the 𝑥-axis and the
kinematic viscosity 𝜈 is on the 𝑦-axis. The diamond symbols represent data
points from the parameter study and the thick line contours indicate where
Π(𝑧max)/Π(0) has values of 0.1, 0.5 and 0.9.

were also included for the upper vertical and outer radial boundaries
when necessary, to prevent wave reflection from these boundaries.
The numerical setup in WiggleWave used was identical to that used
in TAWAS and described in section 2.3 except that wave driving at
the lower boundary was prescribed within the tube boundary 𝑟 = 𝑟0
as,

𝑣 = 𝑢0
𝑟

𝑟0

(
1 −

(
𝑟

𝑟0

)2)
sin

(
𝜔

(
𝑧

𝑉𝐴
− 𝑡

))
, (46)

𝑏 = − 𝑢0
𝑟

𝑟0

(
1 −

(
𝑟

𝑟0

)2)
sin

(
𝜔

(
𝑧

𝑉𝐴
− 𝑡

))
√
𝜇0𝜌 (47)

where we have approximated the lower boundary as a flat magnetic
surface.
First, we compare the results of TAWAS and WiggleWave in a

scenario where wave damping is relatively weak so that we can
compare the results for cases in which the WKB approximation
is valid. We set the magnetic scale height to 𝐻 = 50 Mm and a
density scale height to 𝐻𝜌 = 50 Mm, the kinematic viscosity is set
to 𝜈 = 5× 107 m2s-1. We consider cases with different wave periods,
𝑇 ∈ [10, 30, 60, 90, 120] s. Each case in this scenario was run for
3000 s to allow the wave to fully propagate throughout the domain
and reach a state of quasi-equilibrium.
The data in figs. 10 and 11 is from the case where 𝑇 = 10 s. fig. 10

shows contour plots of the velocity perturbations from both TAWAS
and WiggleWave as well as the difference between the envelopes of
these two wave profiles. We can see that, ignoring the phase differ-
ence, the wave contours are almost identical. The maximum wave
amplitude is about 60 km s-1 whilst the difference between the wave
envelopes is well below 1 km s-1 over most of the domain. Similarly
fig. 11 shows contour plots of the magnetic field perturbations from
both TAWAS and WiggleWave as well as the difference between the
envelopes of these two wave profiles. Again we can see that the wave
contours are almost identical. Themaximumwave amplitude is about
50 𝜇𝑇 whilst the difference between the wave envelopes is below 0.5
𝜇𝑇 over most of the domain.
We can also compare graphs of the wave energy flux Π(𝑧) across

magnetic surfaces of increasing height. fig. 12 shows graphs of the
normalised wave energy flux against the height at which each mag-
netic surface intersects the 𝑧−axis for the case where 𝑇 = 10 s. We
can see that although the curves from TAWAS andWiggleWave show
significant damping at higher heights due to enhanced phase mix-
ing, the difference between the two curves is negligible. In fact, the
maximum difference in wave energy flux for this case is only 1.2%.
For cases with longer wave periods the damping is much less and the
difference between the wave energy flux curves is always less than
1%. This shows that within the limits of the WKB approximation
the analytical model provides a valid solution to the linear governing
equations.
Now we consider a different scenario to test the predictions of

the analytical solution beyond the limits of the WKB approximation.
We use a magnetic scale height of 𝐻 = 20 Mm and a density scale
height of 𝐻𝜌 = 100 Mm to maximise wave damping. Again we set
the kinematic viscosity to 𝜈 = 5× 107 m2s-1 and consider cases with
different wave periods, 𝑇 ∈ [10, 30, 60, 90, 120] s. Each case in this
scenario was run for 4500 s to allow the wave to fully propagate
throughout the domain and reach a state of quasi-equilibrium.
When comparing the wave envelopes for this scenario it is imme-

diately obvious that there are differences between the TAWAS and
WiggleWave solutions in all cases. This shows that indeed the WKB
approximation used in the analytical solution is no longer valid when
wave damping is strong, as we would expect. The question then is
whether the wave damping and crucially the viscous damping, which
is relevant to coronal heating, is stronger or weaker than the analytical
model predicts.
To answer this question we can compare the graphs of the wave

energy flux Π(𝑧) for these cases, fig. 13 shows a graph of the nor-
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Figure 10. Contour plots of the velocity profile for the torsional Alfvén wave, in the case where 𝑇 = 10 s, as calculated using TAWAS (left) and simulated using
WiggleWave (centre) as well as a contour plot of the difference between the envelopes of these two wave profiles (right).

Figure 11. Contour plots of the magnetic field profile for the torsional Alfvén wave, in the case where 𝑇 = 10 s, as calculated using TAWAS (left) and simulated
using WiggleWave (centre) as well as a contour plot of the difference between the envelopes of these two wave profiles (right).

malised wave energy flux for the case where 𝑇 = 10 s and fig. 14
for the case where 𝑇 = 60 s. We can see in fig. 13 that in the case
of 𝑇 = 10 s the wave is fully damped before it reaches 100 Mm for
both solutions, we can also see that the WiggleWave solution shows
stronger damping that the analytic solution from TAWAS. We can see
in fig. 14 that in the case of 𝑇 = 60 s the wave is strongly damped at
100 Mm height but much more strongly in the WiggleWave solution
than in the analytic solution from TAWAS. This demonstrates that
beyond the WKB limit the analytic solution actually under-predicts
the wave damping. As a side note, this graph also shows the effect of
wave reflection in the lower domain for both solutions.

We can see in fig. 13 that for the case of 𝑇 = 10 s the wave
damping is caused almost entirely by viscous dissipation. Looking at
fig. 14, however, we can see that for the case of 𝑇 = 60 s the effect of
wave reflection of wave energy flux is visible in the lower part of the
domain for both the TAWAS andWiggleWave results. This is because
the longer period wave has a larger wavelength and is therefore more
prone to reflection, although as the wave propagates its wavelength
decreases and so does the effect of wave reflection. It is interesting

to note that solutions only diverge when viscous damping becomes
strong due to enhanced phase mixing higher up in the domain.

7 CONCLUSIONS

In this paper we analytically and numerically studied the enhanced
phase mixing of torsional Alfvén waves in an expanding magnetic
flux tube embedded within a stratified coronal atmosphere. This type
of structure is typical of a coronal plume or divergent coronal loop.
We began in section 2 by formulating an analytical solution to the
linearised governing equations eqs. (5) and (6) by following the
derivation in (Ruderman & Petrukhin 2018), that uses the WKB
approximation, and making a correction toward the end of the for-
mulation.
The IDL code TAWAS was presented in section 3. TAWAS calcu-

lates solutions using the analytic formula over a grid in radius, 𝑟 and
height, 𝑧 as well as the total wave energy flux of the Alfvén wave over
magnetic surfaces at different heights. In section 4 we showed that
it is important to include the effect of reflection when considering
Alfvén wave damping and that our correction to the analytical solu-

MNRAS 000, 1–14 (2021)
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Figure 12.Graph of the normalisedwave energyflux acrossmagnetic surfaces
plotted against the height atwhich eachmagnetic surface intersects the 𝑧−axis.
This graph is for a scenario with 𝐻 = 50 Mm, 𝐻𝜌 = 50 Mm, 𝜈 = 5 × 107
m2s-1 and 𝑇 = 10 s. The wave energy flux from TAWAS is shown as a solid
line and the wave energy flux calculated from the WiggleWave solution is
shown as a dashed line.

Figure 13.Graph of the normalisedwave energyflux acrossmagnetic surfaces
plotted against the height atwhich eachmagnetic surface intersects the 𝑧−axis.
This graph is for a scenario with 𝐻 = 20 Mm, 𝐻𝜌 = 100 Mm, 𝜈 = 5 × 107
m2s-1 and 𝑇 = 10 s. The wave energy flux from TAWAS is shown as a solid
line and the wave energy flux calculated from the WiggleWave solution is
shown as a dashed line.

tion decreases the amount of damping attributable to wave damping
relative to the uncorrected formula.
Then in section 5 we used TAWAS (https://github.com/
calboo/TAWAS) to perform two parameter studies to identify the
parameter space in which Alfvén wave damping is significant over
100Mm. In the first parameter study we showed that damping is only
significant when the magnetic scale height is small 𝐻 < 30Mm (i.e.
for strongly divergent magnetic field lines) and the density stratifica-
tion is 𝐻𝜌 is larger. In the second parameter study we showed that

Figure 14.Graph of the normalisedwave energyflux acrossmagnetic surfaces
plotted against the height atwhich eachmagnetic surface intersects the 𝑧−axis.
This graph is for a scenario with 𝐻 = 20 Mm, 𝐻𝜌 = 100 Mm, 𝜈 = 5 × 107
m2s-1 and 𝑇 = 60 s. The wave energy flux from TAWAS is shown as a solid
line and the wave energy flux calculated from the WiggleWave solution is
shown as a dashed line. The annotated boxes shows regions where reflective
damping (blue box) or viscous dissipation (orange box) are the dominant
damping mechanism.

damping is stronger for lower period waves and higher kinematic
viscosities.
To test the validity of our analytical solution, both within and

beyond the limits of the WKB approximation, we wrote a fi-
nite difference solver in FORTRAN called Wigglewave (https:
//github.com/calboo/Wigglewave) that directly solves the lin-
earised governing equations eqs. (5) and (6) and is fourth-order accu-
rate in time and space. In section 6 we compared results from TAWAS
and Wigglewave. We showed that for scenarios with weak damping
(𝐻 = 50 Mm, 𝐻𝜌 = 50 Mm, 𝜈 = 5 × 107), the analytical solution
matches the exact solution very well (to within 1% over most of the
domain). Whereas for scenarios with strong damping (𝐻 = 20 Mm,
𝐻𝜌 = 100Mm) the analytical solution under predicts wave damping
compare to the exact solution calculated by Wigglewave. As a side
note, ourwigglewave results also showed the effect of wave reflection
in graphs of the wave energy flux.
The simulation results from Wigglewave show that, assuming a

reasonable transverse density gradient across the tube structure, the
energy of torsional Alfvén waves can be fully dissipated within 100
Mm if, the magnetic field lines are highly divergent, 𝐻 ∼ 20 Mm,
the wave period is short, 𝑇 ∼ 10 s and a high value of anomalous
kinematic viscosity, 𝜈 = 5 × 107 m2s-1, is assumed. These findings
are similar to those in (Smith et al. 2007) which considers shear
Alfvén waves and shows that shear waves of a similar amplitude are
sufficient to satisfy the coronal heating requirement (Aschwanden
2004) when they are fully dissipated in sufficiently divergent active
regions. Note, that in these simulations only monochromatic Alfvén
wave driving has been considered, if instead a broad spectrum driver
is considered as in (Tsiklauri & Nakariakov 2001) and (Arber et al.
2016) then the heating requirement could potentially be fulfilled for
lower values of viscosity.
Furthermore it is stated in (Smith et al. 2007) that additional phys-

ical effects, such as pressure, three-dimensionality and non-linearity,
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would lead to further heat deposition from the Alfvén waves. Indeed,
in (Malara et al. 2000), it is shown that three dimensional effects can
sometimes dissipate wave energy more efficiently than phase mix-
ing, and in (Malara et al. 1996), it is shown that the interaction of
Alfvén waves with a inhomogeneity can give rise to compressible
perturbations. We will explore these effects further in Paper II using
full MHD simulations. To summarise our findings in this paper:

(i) Wave reflection should be accounted for in the analytical
solution for the enhanced phase mixing of torsional Alfvén waves.
The Wigglewave results show that the effect of wave reflection is
significant and can be accurately predicted by our corrected analytic
formula.

(ii) The analytical solution for the enhanced phase mixing
of torsional Alfvén waves is accurate at predicting the wave
energy flux of the Alfvén wave within the limits of the WKB ap-
proximation but under-reports wave damping beyond theWKB limit.

(iii) The energy dissipated due to the enhanced phase mixing
of torsional Alfvén waves is enough to fulfill the coronal heating
requirement in a magnetic field with sufficiently divergent field lines,
although this requires the application of anomalous viscosity and the
presence of high frequency Alfvén waves.
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APPENDIX A: SOLUTION FOR A POTENTIAL
AXISYMMETRIC MAGNETIC FIELD

We require that the background magnetic field for our setup B0 is
a potential field, (∇2B0 = 0), is axisymmetric, (𝜕𝜃 = 0), has no
azimuthal component (B0 = (𝐵𝑟 , 0, 𝐵𝑧)) and decays with height
according to a characteristic scale height 𝐻.We begin by consider-
ing how the Laplace operator works in cylindrical coordinates for a
random vector A and random function 𝑓 ,

∇2A =

©­­­­«
∇2𝐴𝑟 −

𝐴𝑟

𝑟2
− 2
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+ 2
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Now substituting B0 into our Laplace equation and applying our
assumptions of axisymmetry and no azimuthal component we have
equations for 𝐵𝑟 and 𝐵𝑧 ,

∇2B0 =
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A1 Solution for 𝐵𝑟

Let us first consider the solution for 𝐵𝑟 ,

1
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= 0. (A4)

We try a separable solution 𝐵𝑟 = 𝑍𝑟 (𝑧)𝑅𝑟 (𝑟) which gives us,
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As both sides are in separate variables they must each be equal to
constant for this equality to hold. We call this constant −𝑘21, then we
have,
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− 1
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Note that we have used a −𝑘21 instead of 𝑘
2
1 so that we will end up

with exponential solutions for 𝑍𝑟 instead of oscillating solutions. The
equation for 𝑍𝑟 is then,

𝜕2𝑍𝑟
𝜕𝑧2

= 𝑘21𝑍𝑟 , (A11)

The only solution for 𝑍𝑟 that decays with characteristic scale height
𝐻 is,

𝑍𝑟 = 𝑒−𝑧/𝐻 . (A12)

This allows us to calculate 𝑘1,
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The equation for 𝑅𝑟 is,
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now we define 𝑝1 = 𝑘1𝑟 and transform our equation so that it is in
terms of 𝑝1,

𝜕2𝑅𝑟

𝜕 (𝑝1)2
+ 1
𝑟

𝜕𝑅𝑟

𝜕𝑝1
+

(
1 − 1

𝑝21

)
𝑅𝑟 = 0, (A16)

we can write this as,
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where m = 1. The solution to this is a Bessel function of the first kind
with 𝑚 = 1,

𝑅𝑟 = 𝐽1 (𝑝1) = 𝐽1 (𝑘1𝑟) = 𝐽1
( 𝑟
𝐻

)
. (A18)

The solution for 𝐵𝑟 is therefore,

𝐵𝑟 = 𝐵0𝑒
−𝑧/𝐻 𝐽1

( 𝑟
𝐻

)
. (A19)

A2 Solution for 𝐵𝑧

Now we will consider the solution for 𝐵𝑧 ,

1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝐵𝑧

𝜕𝑟

)
+ 𝜕2𝐵𝑧

𝜕𝑧2
= 0. (A20)

We try a separable solution 𝐵𝑧 = 𝑍𝑧 (𝑧)𝑅𝑧 (𝑟) which gives us,

𝑍𝑧
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑅𝑧

𝜕𝑟

)
+ 𝑅𝑧

𝜕2𝑍𝑧
𝜕𝑧2

= 0, (A21)

𝑍𝑧

(
𝜕2𝑅𝑧

𝜕𝑟2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑟

)
+ 𝑅𝑧

𝜕2𝑍𝑧
𝜕𝑧2

= 0, (A22)
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1
𝑅𝑧

(
𝜕2𝑅𝑧

𝜕𝑟2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑟

)
+ 1
𝑍𝑧

𝜕2𝑍𝑧
𝜕𝑧2

= 0, (A23)

1
𝑅𝑧

(
𝜕2𝑅𝑧

𝜕𝑟2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑟

)
= − 1

𝑍𝑧

𝜕2𝑍𝑧
𝜕𝑧2

. (A24)

As both sides are in separate variables they must each be equal to
constant for this equality to hold. We call this constant −𝑘22, then we
have,

1
𝑅𝑧

(
𝜕2𝑅𝑧

𝜕𝑟2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑟

)
= −𝑘22, (A25)

− 1
𝑍𝑧

𝜕2𝑍𝑧
𝜕𝑧2

= −𝑘22 . (A26)

Note that we have used a −𝑘22 instead of 𝑘
2
2 so that we will end up

with exponential solutions for 𝑍𝑧 instead of oscillating solutions. The
equation for 𝑍𝑧 is then,

𝜕2𝑍𝑧
𝜕𝑧2

= 𝑘22𝑍𝑧 . (A27)

The only solution for 𝑍𝑧 that decays with characteristic scale height
𝐻 is,

𝑍𝑧 = 𝑒−𝑧/𝐻 . (A28)

This allows us to calculate 𝑘2 which turns out to be the same as 𝑘1,

𝜕2𝑍𝑧
𝜕𝑧2

=
1
𝐻2

𝑍𝑧 =⇒ 𝑘2 =
1
𝐻
. (A29)

The equation for 𝑅𝑧 is,

𝜕2𝑅𝑧

𝜕𝑟2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑟
= −𝑘22𝑅𝑧 , (A30)

𝜕2𝑅𝑧

𝜕𝑟2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑟
+ 𝑘22𝑅𝑧 = 0, (A31)

now we define 𝑝2 = 𝑘2𝑟 and transform our equation so that it is in
terms of 𝑝2,

𝜕2𝑅𝑧

𝜕 (𝑝2)2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑝2
+ 𝑅𝑧 = 0, (A32)

we can write this as,

𝜕2𝑅𝑧

𝜕 (𝑝2)2
+ 1
𝑟

𝜕𝑅𝑧

𝜕𝑝2
+

(
1 − 𝑚2

𝑝22

)
𝑅𝑧 = 0, (A33)

where m = 0. The solution to this is a Bessel function of the first kind
with 𝑚 = 0,

𝑅𝑧 = 𝐽0 (𝑝2) = 𝐽0 (𝑘2𝑟) = 𝐽0
( 𝑟
𝐻

)
. (A34)

The solution for 𝐵𝑧 is therefore,

𝐵𝑧 = 𝐵0𝑒
−𝑧/𝐻 𝐽0

( 𝑟
𝐻

)
. (A35)

A3 Solution for B0

The solution for the potential, axisymmetric magnetic field that de-
cays with scale height 𝐻 is therefore,

B0 =
©­«
𝐵0𝑒

−𝑧/𝐻 𝐽1
(
𝑟
𝐻

)
0

𝐵0𝑒
−𝑧/𝐻 𝐽0

(
𝑟
𝐻

)
,

ª®¬ (A36)

where 𝐵0 is the characteristic magnetic field strength.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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